0.1.8
Loading...
Searching...
No Matches
pyhelios.runtime.gpu_detector Namespace Reference

Functions

bool is_gpu_runtime_available ()
 Check if GPU hardware and drivers are actually available at runtime.
 
Dict[str, any] get_gpu_runtime_info ()
 Get detailed information about GPU runtime capabilities.
 
Dict[str, any] _check_cuda_runtime ()
 Check CUDA runtime availability by trying to initialize CUDA.
 
bool _check_opencl_runtime ()
 Check OpenCL runtime availability.
 

Variables

 logger = logging.getLogger(__name__)
 

Function Documentation

◆ _check_cuda_runtime()

Dict[str, any] pyhelios.runtime.gpu_detector._check_cuda_runtime ( )
protected

Check CUDA runtime availability by trying to initialize CUDA.

Returns
Dict with CUDA runtime information

Definition at line 80 of file gpu_detector.py.

◆ _check_opencl_runtime()

bool pyhelios.runtime.gpu_detector._check_opencl_runtime ( )
protected

Check OpenCL runtime availability.

Returns
bool True if OpenCL is available, False otherwise

Definition at line 192 of file gpu_detector.py.

◆ get_gpu_runtime_info()

Dict[str, any] pyhelios.runtime.gpu_detector.get_gpu_runtime_info ( )

Get detailed information about GPU runtime capabilities.

Returns
Dict containing GPU runtime information:
  • cuda_runtime_available: bool
  • cuda_device_count: int
  • cuda_version: str
  • opencl_available: bool
  • platform: str
  • error_message: str (if any errors)

Definition at line 46 of file gpu_detector.py.

◆ is_gpu_runtime_available()

bool pyhelios.runtime.gpu_detector.is_gpu_runtime_available ( )

Check if GPU hardware and drivers are actually available at runtime.

This is different from build-time CUDA availability - this checks if the GPU can actually be used for computation at runtime.

Returns
bool True if GPU is available for runtime use, False otherwise

Definition at line 25 of file gpu_detector.py.

Variable Documentation

◆ logger

pyhelios.runtime.gpu_detector.logger = logging.getLogger(__name__)

Definition at line 13 of file gpu_detector.py.